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Abstract

We look at the relations between hyperkähler and quaternionic Kähler geometry. We exam-
ine, in particular, the existence of a correspondence between the two geometries when the
underlying manifolds admit certain additional symmetries. We describe two ways in which
such a correspondence can be realized and, eventually, we try to analyze what the correspon-
dence gives in some explicit examples. We then explore the general theory of twistor spaces
and provide an explicit construction of the twistor space of P2.
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Introduction

In this joint work, we analyze some remarkable constructions about hyperkähler and quater-
nionic Kähler manifolds and a series of relations existing between these two geometries.

Under certain circumstances, there is a remarkable connection between hyperkähler and
quaternionic Kähler geometry, supplied by Swann’s constructions [13]: if, on one hand, over
any quaternionic Kähler manifold with positive scalar curvature one can build a hyperkähler
manifold endowed with a permuting action of H∗, on the other hand, one can obtain, through
an appropriate quotient, a quaternionic Kähler manifold from any hyperkähler manifold
which admits a free, isometric and permuting Sp(1)-action such that the field IXI does not
depend on the choice of the complex structure I, where XI is the Killing field generated by
the U(1) ⊂ Sp(1) preserving I. This link is at the heart of a correspondence existing between
the two geometries when the considered manifolds admit in addition specific types of circle
actions: more precisely, the correspondence takes into account, on one side, a hyperkähler
manifold with a circle action preserving just one complex structure and, on the other side, a
quaternionic Kähler manifold of the same dimension with a quaternionic Kähler circle action.
In the first part of the project, we will then analyze the way to pass back and forth between the
two sides, following first a differential geometric approach, based on Haydys’s construction
in [10], and then giving the general idea of an alternative construction based on twistor
theory and developed by Hitchin in [11]. Eventually, we will try to understand how the
correspondence works in some specific examples.

In the second half of the project, we start off by describing the construction of the twistor
spaces for oriented Riemannian 4-manifolds, then we move on to describe the higher dimen-
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sional analogue for the hyperkähler and quaternionic Kähler case. Twistor theory allows us
to encode information about the metric purely in terms of holomorphic data. The strength
of this approach is that under certain circumstances the process is reversible i.e. we can
construct the metric from just holomorphic data. We shall give an explicit description of
the twistor space of the complex projective space, P2 and along the way give an overview of
hermitian symmetric spaces.

More systematically, the structure of the paper is as follows.
The first section is devoted to summarize some fundamental constructions from hyperkähler
and quaternionic Kähler geometry that will be needed in the second section. We briefly
describe hyperkähler reductions and the Gibbons-Hawking Ansatz in hyperkähler geometry,
and then we present the essential bundle and quotient constructions for quaternionic Kähler
manifolds. Clarifying examples are provided. The second section is entirely devoted to the
study of the link between the two geometries and in particular to the ways to construct a
correspondence between hyperkähler and quaternionic Kähler manifolds endowed with the
circle actions mentioned above. The attention will be concentrated in particular on the
transition from the hyperkähler to the quaternionic Kähler side of the correspondence. In
the third section, we try to give some examples of how the correspondence works in practice.
On the hyperkähler side, we look at the case of T ∗CPn, of the flat manifolds and of the
Taub-NUT metric obtained as Gibbons-Hawking space; we also describe as the case of the
Eguchi-Hanson metric is solved by Hitchin through the twistor theory. On the quaternionic
Kähler side, one can try to look at the case of CP2 . In the fourth section we first explain the
general theory in the construction of twistor spaces pointing out the main differences in the
four dimensional, hyperkähler and quaternionic Kähler cases. We give a quick description of
the twistor space of the 4-sphere, S4 and proceed to analyse the twistor space of the complex
projective space, P2 which is the flag manifold, F(1,2,3) in more details. We give an explicit
construction of this twistor space and the associated structures by means of Cartan’s moving
frame technique by taking advantage of the fact that these are in fact symmetric spaces. We
also find the nearly Kähler structure on F(1,2,3).

1 Background on hyperkähler and quaternionic Kähler

manifolds

We start giving a brief summary of some background material about hyperkähler and quater-
nionic Kähler geometry, which lays the foundation for the following arguments. The notations
of this section will be then used in the rest of the presentation. We refer freely to well-known
notions from Riemannian geometry, complex geometry and symplectic geometry.
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1.1 Hyperkähler manifolds

Definition 1.1. A hyperkähler manifold is a Riemannian manifold (M, g) with three covari-
antly constant almost complex structures {I, J,K} compatible with the metric and satisfying
the quaternionic identities: IJ = K = −JI.

Another equivalent definition of hyperkähler manifold is the requirement to have holon-
omy group contained in Sp(n).

Note that any manifold M enjoying a pair of anti-commuting almost complex structures
has actually a whole collection A of almost complex structures parametrized by the sphere
S2 ⊂ ImH. For every A ∈ A, one can define a non-degenerate 2-form ωA(·, ·) = g(A·, ·) (or,
ωA(·, ·) = g(·, A·) depending on the conventions), which can be shown to be closed. In fact,
by defining a two form ω with values in the imaginary quaternions

ω = ωIi+ ωJj + ωKk,

the condition ∇I = ∇J = 0 is indeed equivalent to dω = 0. The integrability constraint is
not part of the definition of hyperkähler manifold since it is a direct consequence of dω = 0.

The basic example of hyperkähler manifold is the flat space Hn. The first-known non-flat
example was instead the Eguchi-Hanson metric on T ∗CP1. Calabi provided first example in
dimension bigger than 4, by constructing a hyperkähler structure on T ∗CPn which coincides
with the Eguchi-Hanson metric for n = 1. The first compact example was given by Yau’s
solution of the Calabi Conjecture. One can define hyperkähler structures also on moduli
spaces of solutions of the Yang-Mills(-Higgs) equation (see [14]).

1.1.1 Hyperkähler reductions

One of the main routes to constructing hyperkähler metrics is via hyperkähler quotient. This
method first appeared in a famous paper by Hitchin et al [6].

A vector field X on a hyperkähler manifold M with complex structures {I, J,K} is called
tri-holomorphic if LXI = LXJ = LXK = 0 and tri-hamiltonian if LXω = 0. Note that, for
any Killing field on M, these two conditions are equivalent.

Now, if G is a rank m compact Lie group of isometries acting freely on M and preserving
ω (we say triholomorphically) and, further, the first cohomology group H1(M,R) vanishes,
then we can define three moment maps µ1, µ2, µ3 associated to the action, which can be
condensed in a unique map

µ : M → g∗ ⊗ ImH

defined by 〈µ(m), ξ〉 = µXξ(m), where ξ ∈ g, Xξ is the vector field generated by ξ on M and
µXξ(m) is such that dµXξ(m) = Xξyω. Note that one can always choose µ to be equivariant
(since we have required G to be compact).
Take now a point c ∈ g∗⊗ ImH invariant under the coadjoint action of G. Then the level set
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Mc = µ−1(c) is a submanifold of M of dimension (4n − 3m), which is also G-invariant and
on which G acts freely, isometrically and preserving ω. Hitchin et al. showed that, under the
requirements above, the hyperkähler metric on M descends to a hyperkähler metric on the
(4n− 4m)-dimensional manifold M̃c = Mc/G.

An example
Take M = Hn and take as triple of 2-forms the anti-self dual basis. Then ω = 1

2
dq̄t ∧ dq,

where q : Hn → Hn is the identity. Let now S1 ⊂ Sp(n) act diagonally on Hn via

eiθ · q =


eiθ · q1
. . .
. . .

eiθ · qn


where eiθ · qk = eiθ(qk0 + qk1i) + eiθ(qk2 + qk3i)j = eiθ(qk0 + iqk1) + je−iθ(qk2 − iqk3i). Then

one has Xi(q) = iq and

XiyΩ =
1

2
dq̄t ∧ dq̄ (iq) = −1

2
q̄tidq − 1

2
dq̄tiq =

1

2
d(−q̄tiq).

Hence, the moment map can be identified with µ(q) = q̄tiq and we obtain a hyperkähler
quotient for every c ∈ ImH. For c 6= 0, all these quotients are each other homothetic and, in
particular, homothetic to the one at level i : indeed, given c 6= 0, one can always find hc ∈ H
such that h̄cihc = c and the map φ : Hn → Hn sending q 7→ qh−1c , which is U(1)-equivariant,
brings the set {µ = c} into the set {µ = i}

µ(φ(q)) = µ(qh−1c ) = qh−1c
t
i qh−1c = h−1c ch−1c = i,

so that the following diagram commutes

µ−1(c)
φ //

π

��

µ−1(1)

π

��
Mc

φ̂ //Mi

Now, writing q as z1 + jz2 as above and expanding i = q̄tiq, one finds the relations{
|z1|2 − |z2|2 = 1
zt2z1 = 0.

We can think at z1 as defining a point in CPn−1 and at z2⊗z̄1 as an element in (Hom(〈z1〉, 〈z1〉⊥))∗ :
in fact, from the relation zt2z1 = 0, one has that z2 ∈ 〈z̄1〉⊥, thus, taking ϕ ∈ Hom(〈z1〉, 〈z1〉⊥),
one can define naturally

z2 ⊗ z̄1(ϕ) = zt2ϕ(z1);

this pairing is not degenerate since, if we had zt2ϕ(z1) = 0 ∀ϕ, then zt2w = 0 ∀w ∈ 〈z1〉⊥, but
also zt2z1 = 0, so that zt2w = 0 ∀w; choosing w = z̄2, one has z2 = 0. Since we know that
(Hom(〈z1〉, 〈z1〉⊥))∗ ∼= T ∗[z1]CP

n−1, we can conclude that, topologically, the quotient at every

c 6= 0 is T ∗CPn−1. The induced hyperkähler metric agrees with the Calabi one.
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1.1.2 Gibbons-Hawking Ansatz

The Gibbons-Hawking Ansatz gives a system of coordinates which is particularly appropri-
ate to describe a hyperkähler metric with a triholomorphic S1 action. We follow here the
construction in [12]. An alternative reference can be [15].

Consider an open set U ⊂ R3 with the Euclidean metric and with coordinates u1, u2, u3
and let π : X → U be a S1-principal bundle, with S1-action generated by the vector field
∂
∂t
. Let θ be a connection 1-form on X, (namely, a iR-valued S1-invariant 1-form on X such

that θ( ∂
∂t

) = i. Its curvature is dθ = π∗α for a 2−form α on U, and the first Chern class of
π : X → U is given 1

2πi
α. Now, assume that V is a real function on U satisfying

?dV =
α

2πi
. (1)

(Note that V is harmonic since dα = 0 implies ?d ? dV = 0.) Set θ0 = θ
2πi

and
ω1 = du1 ∧ θ0 + V du2 ∧ du3
ω2 = du2 ∧ θ0 + V du3 ∧ du1
ω3 = du3 ∧ θ0 + V du1 ∧ du2.

(2)

If we assume that V is positive everywhere on U, then ω1, ω2, ω3 are non-degenerate, ωi∧ωj =
0 if i 6= j and (1) implies that dωi = 0 for every i. Then one can directly verify that ω1, ω2, ω3

define a hyperkähler structure on X (and π turns out to be the hyperkähler moment map
for the S1 action). Indeed, taking for instance Ω = ω2 + iω3 to be the (holomorphic) 2-form
on X determines an integrable complex structure I on X, with du2 + du3 and θ0 − iV du3
spanning the holomorphic cotangent space. Now, putting g(v, w) = ω(v, Iw), one finds for
the metric

g = V (du21 + du22 + du23) +
1

V
θ20. (3)

In fact, the standard procedure is to take a positive harmonic V such that ?dV gives the
Chern class of the bundle. Then θ is uniquely determined by the condition 1 (up to pull-back
closed 1-forms from the open set U).

Taub-NUT metric and instantons Consider the Hopf fibration π : S3 ⊂ C2 → S2 ⊂ R3,
extend it to a map C2 \ {0} → R3 \ {0}, and compose it with the complex coniugation on z2
to get a map µ : C2 \ {0} → R3 \ {0}

(z1, z2) 7→ (|z1|2 − |z2|2, 2Re(z1z2), 2Im(z1z2)). (4)

The map describes X as S1-bundle over R3 \ {0}, with Chern class ±1 and S1 action given
by eit · (z1, z2) = (eitz1, e

−itz2).
Notice that, via the identification q = (q0 + iq1) + j(q2 − iq3) = (z1, z2), this is exactly the
moment map µ : H→ ImH ∼= R⊕C : q 7→ q̄iq = u1i+ k(u2 + iu3) for the action of S1 on H
considered above: (eit, q) 7→ eit · q. We can choose

θ = i
Im(z̄1dz1 − z̄2dz2)
|z1|2 + |z2|2

. (5)
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Then a positive harmonic function on R3 \ {0} satifying (1) has to be of the form

Ve = e+
1

4π|u|
(e ≥ 0, u = (u1, u2, u3)). (6)

We have found in this way a family of hyperkähler structure on the space X, given by
ge = Ve du ·du+ 1

Ve
θ20, which, for e ≥ 0, extend to all R4. When e = 0, ge is just the flat metric

on C2, when the choice e > 0 gives so-called Taub-NUT metric, whose asymptotic behaviour
at infinity is completely different from the Euclidean case: the volume of large geodesic
balls in Taub-NUT goes asymptotically as r3. Such metrics are in fact ALF (asymtotically
locally flat) spaces, which approach a flat metric for |u| going to ∞, but being periodic in
the coordinate t.
Further, choosing in the Ansatz

Ve = e+
n∑
i=1

1

4π|u− ui|
, (7)

where u1, . . . un ∈ R3 are n distinct points in R3, gives an infinite family of ALF spaces.
With the choice e = 0, we find as before complete hyperkähler structures of type ALE
(asymptotically locally Euclidean), of volume growth r4 : k = 1 gives C2 and the flat metric,
k = 2 is Eguchi-Hanson and the following ones go under the name of multi Eguchi-Hanson
metrics. For a treatment of this topic, see [14].

1.2 Quaternionic-Kähler manifolds

In the next exposition, we follow quite closely Swann’s presentation of quaternionic-Kähler
manifolds in [13]. We first start by recalling some fundamental definitions.

Definition 1.2. A 4n-Riemannian manifold (N, g) is called quaternionic-hermitian if there
exists a sub-bundle A ⊂ End(TN) spanned by a basis I, J,K of almost complex structures
satisfying the quaternionic identit K = IJ = −JI in a neighbourhood Ux of every point
x ∈ N and the metric g is compatible with A, namely gx(A·, A·) = gx(·, ·) ∀A ∈ Ax and
x ∈ N.

We want to remark that, in this case, unlike the hyperkähler case, we have a basis of
almost complex structures only locally.

The bundle A can be naturally embedded in Λ2T ∗N, through the identification Ax 7→
(ωA)x. Further, although a basis {I, J,K} of A can be defined just locally, the so-called
fundamental 4-form of N, locally defined via

Ω = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK ,

is a non-degenerate 4-form which turns out to be globally well defined.
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Definition 1.3. For n > 1, a 4n-dimensional quaternionic-hermitian manifold is called
quaternionic Kähler if ∇Ω = 0, where ∇ denotes the Levi-Civita connection of g.

If dimN ≥ 12, then ∇Ω = 0 is equivalent to dΩ = 0. If dimN = 8, N is quaternionic
Kähler if dΩ = 0 and, in addition, the algebraic ideal generated by A is differential (i.e.,
closed under differential d). A proof of these results can be found in [13, Chapter 5].

An equivalent definition of quaternionic Kähler manifold is the request for the holonomy
group of the N to be contained in the subgroup

Sp(n)Sp(1) = Sp(n)×Z2 Sp(1)

of SO(4n), which implies (Aleskseevskii, 1968) that M is an Einstein manifold.

If N is 4-dimensional, the condition ∇Ω = 0 is automatically satisfied, since Ω is nothing
but six times the volume form of N, so an extension of the previous definition is needed. In
that case, a Riemannian manifold is said to be quaternionic Kähler if it is oriented, Einstein
and self-dual.

In what follows, we will consider exclusively manifolds with non-zero scalar curvature,
since simply connected quaternionic Kähler manifolds with zero scalar curvature are easily
seen to be hyperkähler manifolds. Our model example of a quaternionic Kähler manifold is
the quaternionic projective space HP n, with its symmetric metric.

1.2.1 The associated Swann bundle

If N is any quaternionic Kähler 4n-manifold, one can construct naturally a (4n+4)-manifold
associated to it. Take the reduced frame bundle F of N, i.e., for every x ∈ N, consider the
collection of frames u : Hn → TxN compatible with the structure of quaternionic manifold.
Locally, F can be lifted to a principal Sp(n) × Sp(1)- bundle F̃ which double covers F,
allowing the construction of bundles associated to representations of Sp(n)×Sp(1). A global
lift of F to F̃ is not always possible, but can be realized just when the cohomology class
ε ∈ H2(M,Z2) defined by Romani and Marchiafava vanishes.
Consider now the bundle H obtained by quotienting F̃ ×H by Sp(n)× Sp(1) :

F̃ ×H $ //

π1
��

H

πH

��
F̃

π // N

Starting from the structure on N, we will briefly see how one may define hyperkähler and
quaternionic Kähler metrics on H.
Consider the canonical 1-form θ ∈ Ω1(F,Hn) given by θu(v) = u−1(dπ(v)), where u ∈ F and
v ∈ TuF, and the torsion-free connection ω ∈ Ω1(F, sp(n)⊕sp(1)) induced by the Levi-Civita
connection on N, which can be decomposed as ω = ω+ + ω−, relative to the decomposition
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of the Lie algebra. Now pull-back to F̃ ×H the forms θ, ω± and the identity x : H→ H and
define

α = dx− xω− ∈ Ω1(F̃ ×H,H).

One can prove that the forms xθ̄t ∧ θx̄ and α ∧ ᾱ on F̃ × H are indeed pull-backs of forms
on H, and also the function r2 = xx̄ is well defined on H. Thus we may consider the 2-form
ν ∈ Ω2(H, ImH) given by

ν = f(r2)α ∧ ᾱ + g(r2)xθ̄t ∧ θx̄,
whose i, j, k components are non-degenerate if f, g are nowhere-zero real-valued functions.
Further, the pseudo-Riemannian metric g on H

g = Re(f(r2)α⊗ ᾱ + g(r2)r2θ̄t ⊗ θ),

turns out to be positive definite away from the zero section if f, g > 0 everywhere and, in
addition, the almost complex structures associated to g and ν do not depend on f and g.
If we put now Υ = ν ∧ ν, then g is pseudo-hyperkähler if dν = 0, pseudo-quaternionic
Kähler if dΥ = 0. This translates into appropriate conditions on f, g, as shown by Swann in
[13, Theorem 2.1.5]. We obtained in this way pseudo-hyperkähler and pseudo-quaternionic
Kähler metrics on H \ 0.
However, as mentioned above, in the general case H does not exist globally over N ; therefore,
in the generic situation, one needs to consider instead the bundle

U(N) = F ×Sp(n)Sp(1) (H∗/Z2).

This bundle, the Swann bundle, is a principal H∗/Z2 bundle over N , with action induced
from the action (q, h) 7→ q̄h of H∗ on H. The results seen before still hold on the Swann
bundle, as the form and the metric considered above are invariant through the quotient and
thus well-defined when projected to U(N). In particular, the metrics defined on U(N) are
positive definite if N has positive scalar curvature.

An example
Consider the projective space HPn, the Swann bundle U(HPn) can be directly derived. In-
deed, using the fact that HPn ∼= Sp(n+ 1)/(Sp(n)×Sp(1)), one can shows that, in this case,
the lift F̃ is exactly Sp(n+ 1) and so

H \ 0 = F̃ ×Sp(n)×Sp(1) H∗ =
Sp(n+ 1)

Sp(n)
×Sp(1) H∗ =

Sp(n+ 1)

Sp(n)
× R>0 = S4n+3 × R>0,

thus H \ 0 is Hn+1∗ topologically. Further, the hyperkähler metric on it can be shown to be
the flat metric (see [13]), which may be completed by adjoining a point.
(The quaternionic Kähler metrics, instead, are induced by the inclusion Hn+1∗ ⊂ HP n+1 and
are completed by adjoining a copy of HP n at infinity.)

1.2.2 Quotients

The quotient constructions for symplectic, Kähler and hyperkähler manifolds have been ex-
tended to the quaternionic Kähler case by Galicki and Lawson.
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Quaternionic Kähler actions on N A Killing vector field W on a quaternionic Kähler
manifold N is said to be quaternionic if LWΩ = 0. One can prove that (see [13, Lemma
3.1.1])

Lemma 1.4. If W is a quaternionic vector field on N, then it can be lifted to a Hamiltonian
Killing field X̃ on U(N).

It follows then that, if a group G acts on N freely and isometrically and preserving Ω (we
say quaternionically), its action can be lifted to an isometric and triholomorphic action on
U(N), that is also free, since the fibres of πH : U(N)→ N are preserved.

Consider now a Killing field Y generated by G, its lift X to U(N) and the Sp(n)Sp(1)-
invariant vector field on F, still indicated by X, satisfying $(X) = X. Then the function µX
on F ×H∗ given by the espression

µX = −Xy(xω−x̄)

is Sp(n)×Sp(1)×Z2-invariant and well-defined on U(N) and one can prove [13, Proposition
3.1.2]

Proposition 1.5. The map µ : U(N) → g∗ ⊗ ImH defined above is a hyperkähler moment
map for the induced action of G on U(N).

Consider now A embedded in Λ2T ∗N, which is nothing but the subbundle of Λ2T ∗N
(denoted again withA) with fiber sp(1) ∼= ImH. Taken the 1-form αY obtained by contracting
Y with the metric g, consider ∇αY ∈ Λ2T ∗N and its the orthogonal projection (∇αY )A onto
A. Choosing a frame u ∈ F, we have that

(∇αY )Aπ(u) = ω−(X)u.

Thus, µX is zero at c ∈ U(N) if and only if (∇αY )AπH(c) = 0, so that µX is zero on the entire
fibre along c when vanishing at c.

Quaternionic Kähler reductions Let G be a compact Lie group acting freely, smoothly,
isometrically and quaternionically on N. For any quaternionic Killing field Y on N generated
by the action, let

fY =
1

λ
(∇αY )A,

where λ is the Einstein constant for N.

Definition 1.6. (Galicki, 1987) The moment map N → g∗ ⊗ A associated to the action is
defined by

〈φ(m), Y 〉 = fY (m),

for every m ∈M and every vector field Y generated by G.
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One can prove (see [13, Lemma 3.2.2]) that φ is G-equivariant; in this case, however,
N0 = φ−1(0), where 0 is the zero section, is the only one natural G-invariant submanifold we
can consider. Galicki and Lawson (1988) proved that NG = N0/G has a quaternionic Kähler
structure derived from N.

An example
The action of U(1) on Hn+1 previously considered descends to HP (n) and the moment map
at [q0 : · · · : qn] is still given by q̄iq. Writing q = a + jb, there is A ∈ U(n + 1) such that
Aa = (1, 0, . . . , 0)t; so, if φ(q) = 0, then also Aq = Aa+ jĀb is a zero and BtĀtAb = bta = 0,
thus Āb = (0, b1, . . . , bn)t and we can choose it to be (0, 1, . . . , 0)t. Hence, U(n + 1) acts
transitively on the zero set of φ; the quaternionic Kähler quotient is then

U(n+ 1)

SU(2)× U(n− 1)× U(1)
= Gr2(Cn+1),

where SU(2)× U(n− 1) is the stabiliser at one point.

Commuting quotients If one takes the hyperkähler reduction of the Swann bundle U(N)
at the zero level set of the moment map, the following remarkable property of commutativity
holds (see [13, Theorem 3.3.1]):

Theorem 1.7. If N is a quaternionic Kahler manifold and G acts isometrically, freely and
quaternionically on N, then the pseudo-hyperkähler quotient of U(N) by the lifted G action
is exactly the Swann bundle associated to the quaternionic Kähler quotient of N by G.

2 The correspondence

In this section we analyze the link between hyperkähler and quaternionic Kähler geometry
and, in particular, the existence of a correspondence between hyperkähler and quaternionic
Kähler manifolds admitting particular types of symmetries. More precisely, we will consider,
on one side, a hyperkähler manifold with a circle action preserving just one complex struc-
ture and, on the other side, a quaternionic Kähler manifold of the same dimension with a
quaternionic Kähler circle action. We will describe how one could go from the first side to
the second one and viceversa and we will try to undestrand to which extent the construction
is symmetrycal.

The transition from the quaternionic Kähler to the hyperkähler side requires the construc-
tion of the Swann bundle of the quaternionic manifold, while the opposite one involves the
introduction of a natural S1 bundle over the hyperkähler manifold whose connection turns
out to be hyperholomorphic; those contructions have been classically developed through two
different approaches: the first of them is of differential geometric type and is essentially based
on Haydys’s results in [10], while the second, by Hitchin [11], makes use of twistor theory.

Here we will mainly follow the differential geometric perspective, taking some ideas from
Hitchin’s construction when explaining the transition from the hyperkähler to the quater-
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nionic Kähler side. Explicit examples of the construction will be presented in the next
chapter.

2.1 The hyperkähler/quaternionic Kähler link

There is a noteworthy link between hyperkähler and quaternionic Kähler geometry, provided
by Andrew Swann’s constructions.

Permuting complex structures Let M be a hyperkähler manifold with the relative 2-
form ω ∈ Ω2(M, ImH) and assume that SU(2) = Sp(1) acts on M isometrically via (q,m) 7→
φ(q,m). We say that the action of Sp(1) permutes complex structures (or is permuting) if

φ∗q(ω) = qωq̄ ∀ q ∈ Sp(1). (8)

which implies that LXξω = [ξ, ω] = ξ ·ω−ω · ξ, with ξ ∈ sp(1) = ImH and Xξ the associated
vector field on M. In fact,

LXξω =
∂

∂t |t=0
(φξt )

∗ω = lim
t→0

(φξt )
∗ω − ω
t

= lim
t→0

exp tξ · ω · exp tξ − ω
t

=
∂

∂t |t=0
exp tξ · ω · exp tξ

= ξ · ω + ω · ξ̄ = ξ · ω − ω · ξ,
where exp tξ is the integral curve of ξ in Sp(1) starting at 1 and φξ is the flow generated by
ξ on M.
It is clear that in this case the quotient constrcutions seen above do not apply. However, if
we fix one complex structure, say I, then there is a subbundle U(1) ⊂ Sp(1), (the stabilizer
Stabi of i via (q, h)→ qhq̄) which preserves I and rotates J and K : one has

exp (it)ω exp (−it) = ωIi+ exp (2it)[(ωJ + ωKi)j]

and LXiω = iω − ωi = −2ωKj + 2ωJk, so

LXiωI = 0, LXiωJ = −2ωK , LXiωK = 2ωJ .

Then the following result [13, Theorem 3.5.1] holds:

Theorem 2.1. Let M be hyperkähler manifold which admits an isometric Sp(1)-action such
that

1) there is a finite subgroup Γ of Sp(1) such that Sp(1)/Γ acts freely;

2) Sp(1) induces a permuting action on the 2-sphere of complex structures;

3) if XI is the Killing field generated by the circle subgroup of Sp(1) preserving the structure
I, then the real span of IXI in TM is independent of the choice of I.

Choose a subgroup U(1) ⊂ Sp(1) preserving a complex structure I and let µ : M → R be a
moment map for this action of the subgroup with respect to the Kähler structure defined by
I. Then µ−1(x) is Sp(1)- invariant and µ−1(x)/Sp(1) is a quaternionic Kähler manifold.

12



Hyperkähler potentials In [6] Hitchin et al. proved that, if M is a hyperkähler manifold
with a S1 action preserving I and permuting J and K, then the moment map µI associated to
the action of I is a Kähler potential the other two complex structures. One can then wonder
under which conditions there exists a hyperkähler potential on M, i.e. a Kähler potential for
all the complex structures simultaneously. In fact, one has that ([13, Proposition 3.6.2]

Theorem 2.2. If a hyperkähler manifold M has a hyperkähler potential, then then M ad-
mits a local Sp(1)-action permuting complex structures and such that the vector field IXI

independent of I.
Conversely, if M admits such an action, then M has a hyperkähler potential given by the
moment map µI associated to I.

Note that, if M is a hyperkähler manifold with hyperkähler potential µ, then the vector
field W dual to dµ is an infinitesimal quaternionic and it is exactly IXI . Hence, the local
Sp(1)-action above can be actually extended to a local homothetic action of the entire H∗ =
R∗ × Sp(1) (also called permuting). In particular,

IYI = JYJ = KYK = −Y0, (9)

where Y0 generates the homotetic action of R∗ ⊂ H∗ : (φr)
∗g = r2g.

We have then seen that, on one hand, for any quaternionic Kähler manifold N, one can
construct a hyperkähler manifold U(N) with an induced action of H∗; this action turns out
to permute the complex structures over U(M). On the other hand, given any hyperkähler
manifold M as in 2.1, the quotient N = M/H∗ carries a quaternionic Kähler structure.

The hyperkähler 4-manifolds admitting a permuting S1-action were classified by Gibbons,
Pope, Atiyah and Hitchin and consist of the flat metric on H, the TAUB NUT metric and
the hyperkähler metric on the moduli space of charge 2-monopoles (see[14]), but only the
flat one has a hyperkähler potential.

We are now ready to look at the influence of additional S1-symmetries on the relations
between hyperkähler and quaternionic Kähler manifolds.

2.2 S1 symmetries: the quaternionic Kähler side

Let us start by looking at the quaternionic Kähler side.
Let N be a quaternionic Kähler manifold of positive scalar curvature and dimension 4n
endowed with a quaternionic Kähler action of S1. As we have seen in the previous chapter,
one can construct over N a manifold U(N) of dimension 4n + 4, the Swann bundle, which
can be endowed with a hyperkähler structure and has a homotetic action of H∗. Then, the
S1 action can be lifted to U(N) and the lifted action enjoys the properties of being isometric,
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triholomorphic and free, as seen before. By taking the hyperkähler reduction of U(N) by
this action, one obtains a hyperkähler manifold K(N) of dimension 4n.

H∗
--
U(N)

##

S1rr

S1 **
N

<<

K(N) Stabi
rr

2.3 S1 symmetries: the hyperkähler side

Let M̃ be a hyperkähler manifold endowed with an isometric and permuting complex struc-
tures action of S1(denoted by S1

r from now on). As mentioned above, to pass to the quater-
nionic side, one needs the introduction of a principal S1-bundle P over M̃ (we denote this
S1 by S1

0 from now on), to which the S1
r action on M̃ must be extended.

We first present, following Haydys’s construction in [10], the differential geometric way
to obtain the bundle P (via its curvature form), which involves also the construction, via P
itself, of another bundle over M̃, with fiber H∗.

2.3.1 The differential geometric approach

Since there is a standard method of producing the desired bundle P when the hyperkähler
manifold considered is espressed as the hyperkähler quotient of a manifold M, this will be
the first case we consider.
Further, the construction that follows permits in addition to reconstruct an open and every-
where dense submanifold of the initial hyperkähler manifold M as a bundle over the reduction
M̃.

M̃ as hyperkähler quotient Consider a hyperkähler manifold M, with metric g and
symplectic structure ω = ωIi + ωJj + ωKk, where ωA(·, ·) = g(·, A·) ∀A ∈ A, endowed in
addition with

1) a isometric H∗ action which permutes complex structures;

2) an additional hyperkähler action of S1 (denoted with S1
0 from now on), with moment

map µ : M → ImH given by dµ = −K0yω, where K0 is the Killing vector field of the
action.

Suppose that these two actions are commuting and that µ is equivariant with respect to H∗:

µ ◦ Lx = xµx̄, x ∈ H.

14



If we now consider the imaginary quaternion i and the relative level set of the moment map
P = µ−1(i), then the map

f : H∗ × P →M \ µ−1(0)

(x,m)→ xm

is surjective, thanks to the H∗-equivariance of µ and since the action of H∗ on ImH \ {0} via
(x, h)→ xhx̄ is transitive. Indeed, given n ∈M such that µ(n) = h 6= 0, one can find x ∈ H∗
such that h = xix̄, thus, by defining m = x−1n, we have that µ(m) = x−1µ(n)x−1 = i,
thus m lies in P, and clearly f(x,m) = n. We denote by M0 the open and everywhere dense
submanifold M \ µ−1(0) of M, for brevity.
Nevertheless, it is clear that f is not a bijection, since, thanks to the H∗ equivariance of µ,
the action of Stabi = S1 ⊂ H∗ (which we denote by by S1

r to avoid confusion) passes to the
level set P :

µ(exp(it)m) = exp(it)µ(m) exp(it) = exp(it)i exp(−it) = i.

Consequently, two points of the form (x,m) and (xz, z̄m), with z ∈ S1
r , are both mapped by

f into the same point in M0 : f(x,m) = xm = f(xz, z̄m). What one obtains is then that the
manifold M0 can be identified with the quotient H∗ ×S1

r
P :

M0
∼= H∗ ×S1

r
P.

Note now that, thanks to the H∗-equivariance of µ, each non-zero imaginary quaternion is
a regular value of µ; hence, if we suppose in addition that the action of S1

0 is free on P, the
quotient M̃ = P/S1

0 is nothing but the hyperkähler reduction of M and P can be described
as a S1

0 -principal bundle over M̃.

What Haydis showed in [10] is that, under these circumstances, it is actually possible to
express the hyperkähler structure of M0 solely in terms of H∗ and P. Moreover, since the
structure on P will just depend to the one on M̃, on the Killing field K0 and on the induced
connection on P itself, the hyperkähler structure of M0 will just depend on the same quan-
tities and H∗. The construction is very explicit and goes as follows.

Denote the squared norm of K0 by v−1 = g(K0, K0) : M̃ → R>0, (notice that v−1 is
defined on M̃ since S1

0 acts isometrically on M). The connection induced by the action of S1
0

on P is then given by
ξ(·) = vg(K0·, ·) ∈ Ω1(P ),

so that, for every vector u in TM̃, it is now defined a horizontal lift û. Further, since

T.P ∼= RK0 ⊕ T.M̃,

the metric on P is completely determined by the data of ξ, v and the induced metric g̃ on
M̃ :

g = g̃ + v−1ξ2. (10)
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It is now important to observe that, since we asked for the the two actions on M to be
commuting, the inherited action of S1

r on P descends to M̃, with the property (inherited from
M), of fixing I and rotating the plane generated by J and K. We indicate with Kr the Killing
vector field of S1

r on M̃ and its squared norm with w = ‖Kr‖g̃ : M̃ → R>0. Eventually, we
denote by

η = Kryg̃ +Kryω̃ ∈ Ω1(M̃,H).

We now want to write down the relation between Kr, Killing vector field for the S1
r on M̃,

and YI , Killing vector field for the same action on P. First of all, we start observing that

T.M = T.P ⊕ RIK0 ⊕ RJK0 ⊕ RKK0 and T.P = Kerdµ.

Moreover, dµ(IK0) = −ω(K0, IK0) = g(K0, K0)i + g(K0, KK0)j − g(K0, JK0)k = v−1i, so
that, by repeating this procedure also for J and K, we find

dµ(IK0) = v−1i, dµ(JK0) = v−1j, dµ(KK0) = v−1k.

Then, by differentiating with respect to t the property of equivariance of µ at a point m ∈ P,
µ(exp(it)m) = exp(it)µ(m) exp(−it) = i, we find that dµ(YI) = 0, and so YI = K̂r + aK0,
for some a ∈ R. Analogously, from the relation µ(rm) = rµ(m)r = r2i, one obtains that

dµ(Y0) = 2i, and so Y0 = Ŷ + bK0 + 2vIK0, for some b ∈ R. But then, by the formula
IY0 = YI , it follows that a = −2v, b = 0 and Y = −IKr. Using the other relations (9), we
eventually find 

Y0 = −IK̂r − 2vIK0

YI = K̂r + 2vK0

YJ = KK̂r + 2vKK0

YK = −JK̂r − 2vJK0.

(11)

Another important consequence of the commutativity of the two S1 actions on P is that
the function v is S1

r invariant. Indeed, differentiating with respect to t the commutativity
relation mf(t)z = mzf(t), where z ∈ S1

r and f(t) is the integral curve starting at 1 of the
generator of Lie(S1

0) ∼= R, one finds that K0|zm = d(Lz)K0|m and so that

v−1zm = g(K0|zm, K0|zm) = g(dLz(K0|m), dLz(K0|m))

= (L∗zg)(K0|m, K0|m) = g(K0|m, K0|m) = v−1m .

For the same reason, also the connection ξ is S1
r invariant, which means that LYIξ = 0.

But then, by Cartan’s formula, we find that 0 = YIydξ + YIydξ, and so that, denoting with
Fξ ∈ Ω2(M̃) the pullback to M̃ of the curvature of ξ,

KryFξ + 2dv = 0, (12)

which can be thought as an alternative formulation of the S1
r invariance of ξ.
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At this point, Haydys shows that the pullback metric f ∗g on H∗ × P can be explicitly
written in terms of the connection ξ on P, the function v and of tensors on H∗ and M̃, so that
also the metric on M0 just depends on these quantities. We summarize here the procedure.
Given (x,m) ∈ H∗ × P, and (h1, v1) (h2, v2) ∈ TxH∗ × TmP, define α = x−1h1, β = x−1h2 ∈
T1H∗, and let Yα, Yβ be the Killing vector fields of H∗-action at m, corresponding to α and β
respectively. Then one has (Y1, Yi, Yj, Yk) = (Y0, YI , YJ , YK).
Recall now that df(x,m)(h1, v1) = d

dt |t=0
f(γ1(t), γ2(t)), with γ1 and γ2 satisfying γ1(0) =

x, γ̇1(0) = h1 and γ2(0) = m, γ̇2(0) = v1. But, since h1 = dLxα = d
dt |t=0

(x · A(t)), with

A satisfying A(0) = 1 and Ȧ(0) = α, then

df(x,m)(h1, v1) =
d

dt |t=0
xA(t)γ2(t) = dLx

(
d

dt |t=0
A(t)γ2(t)

)
=

= dLx

(
d

dt |t=0
A(t) ·m+A(0) · d

dt |t=0
γ2(t)

)
= dLx(Yα + v1).

Hence, one can write

f ∗g((h1, v1), (h2, v2)) = g(dLx(Yα + v1), dLx(Yβ + v2)) = |x|2g(Yα + v1, Yβ + v2).

and now just the computations of the terms g(Yα, Yβ), g(Yα, v) and g(v1, v2) are needed. By
developing them through (9) and 11, one obtain for the pullback metric the final form:

f ∗g = (4v + w)Redx⊗ dx̄− Re(x̄dxi� (2ξ + η)) + |x|2(g̃ + v−1ξ2), (13)

where (δ�γ)(v1, v2) = δ(v1)γ(v2) + δ(v2)γ(v1) for 1-forms δ and γ, and η is now the pullback
of η to P. Analogously,

f ∗ω((h1, v1), (h2, v2)) = ω(dLx(Yα + v1), dLx(Yβ + v2)) = xω(Yα + v1, Yβ + v2)x̄

and eventually

f ∗ω =
4v + w

2
dx ∧ dx̄+ xω̃x̄− 2Im(dxix̄) ∧ ξ − Im(dxi ∧ ηx̄). (14)

We can therefore state the following result:

Theorem 2.3. If M is a hyperkähler manifold M with a permuting action of H∗ and a tri-
holomorphic action of S1 with Killing field K0 of squared norm v−1, the open and everywhere
dense submanifold M0 = M \ µ−1(0) can be seen as the product

H∗ ×S1
r
P,

where P is an S1
0 principal bundle with connection ξ over the hyperkähler reduction M̃ of

M and S1
r = Stabi ⊂ H∗. Further, the hyperkähler structure on M0 can be described just in

terms of tensors on H∗, M̃ , and of ξ and v via (13) and (14).
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Inverse construction The most important result of the section is that the previous con-
struction can actually be reversed.

Start by considering a hyperkähler manifold M̃ endowed with an isometric and permuting
complex structures S1

r action. Take an S1
0 principal bundle over M̃ with connection ξ and

extend the S1
r action on M̃ to P in such a way that the two S1 actions on P commute (which

is always possible, at least locally). Consider now the manifold H(M̃) = H∗ ×S1
r
P. One can

define a metric g and a form ω on M0 whose pull-backs to H∗ × P via π : H∗ × P → H(M̃)
are given by (13) and (14). For this to be true, one has to show that

1) the formulae (13) and (14) define invariant and basic tensors on H∗ × P ;

2) the 2-form ω ∈ Ω2(M0, ImH) is closed.

Now, (1) can be easily seen using the S1
r -invariance of ξ and through a direct computation,

so that (2) is equivalent to f ∗(ω) being closed. Since d f ∗(ω) lies in

Ω3(H∗ × P, ImH) =
3⊕
l=0

Ωl(H∗, ImH)⊗ Ω3−l(P, ImH),

all its 4 components must vanish identically. This give rise to the following conditions:

Fξ = −1

2
d(kryg̃)− ω̃I (15)

and
4dv + dw = 2Kryω̃I , (16)

but, actually, we need just the first of them, since (16) follows from putting (15) and (12)
together. The function v can be found, up to a constant, from (16).

Recall now that every hyperkähler manifold with an S1 action preserving one complex
structure and rotating the other two has a Kähler potential given by the moment map of the
action itself. More precisely, if ρ̃ : M̃ → R satisfies dρ̃ = −Kryω̃1, then j∂J ∂̄J ρ̃ = ω̃J and the
analogous holds for ωK . Now, observing that I∗dρ̃ = Kryg̃ and so that −2i∂I ∂̄I ρ̃ = d(Kryg̃),
the equation (15) can be rewritten in the form

Fξ = i∂I ∂̄I ρ̃− ω̃I

and ρ̃ is an hyperkähler potential when Fξ ≡ 0.
We have therefore obtained the following result (the complete proof can be found in [10,
Theorem 2.3]):

Theorem 2.4. Let M̃ be a hyperkähler manifold endowed with an isometric and permuting
complex structures S1

r action. Let P an S1
0 principal bundle over M̃ with connection ξ.

Denoting by w the squared norm of the Killing vector field Kr of S1
r and by ρ̃ its moment

map, assume that the function

v = −w + 2ρ̃

4
(17)
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is everywhere positive.
Extend the S1

r action on M̃ to P in such a way that the two S1 actions on P commute. Then
(13) and (14) define a hyperkähler structure on H(M̃) = H∗ ×S1

r
P if and only if

Fξ = i∂I ∂̄I ρ̃− ω̃I . (18)

Note that, if one starts a hyperkähler manifold M with a permuting action of H∗ and a
triholomorphic action of S1, the submanifold M0 of the previous section can be obtained as
H(M̃), where M̃ is the hyperkähler reduction of M and satisfies the property above.

Note also that the hyperkähler reduction of H(M̃) by S1
0 is M̃, thus the construction

above can be thought as an inverse to that of hyperkähler reduction.

One can say even more than Theorem 2.4 about H(M̃). It was in fact proved by Feix
that a hyperkähler potential for a hypkaähler manifold with a permuting H∗ action is given
by the squared norm of the Killing field of the action, up to a constant −1/2.
In our case, we have a natural permuting H∗ action on H(M̃) induced by the multiplication
on the first component of H∗ × P and the squared norm of the Killing field of R∗ ⊂ H∗ with
respect to (13) is given by ρ = (4v + w)|x|2. Hence we have the following

Corollary 2.5. The left action of H∗ action on H(M̃) induces a transitive action on the
2-sphere of complex structures of H(M̃), thus H(M̃) has a hyperkähler potential given by

ρ = −1

2
(4v + w)|x|2.

The associated quaternionic Kähler manifold So far, starting from a hyperkähler
manifold M̃ with a specific S1 symmetry, we have constructed another hyperkähler manifold
H(M̃) over it. Starting from H(M̃), we can now construct the quaternionic Kähler manifold
associated to M̃, by taking

Q(M̃) = H(M̃)/H∗ = P/S1
r ,

which we know to be quaternionic Kähler by Theorem 2.1. We have passed in this way from
the hyperkähler to the quaternionic Kähler side:

H× P

��

//H(M̃)

��

H∗
qq

S1
0

** P

$$

S1
r

tt

S1
r

**
M̃

<<

Q(M̃) S1
0

qq
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The structure of Q(M̃) can be described in terms of M̃ and P.
Take a level set of the hyperkähler potential of H(M̃) and divide it by Sp(1), so that
the complex structures of N0 can be viewed as induced by the ones on H(M̃) on V =
span(Y0, YI , YJ , YK)⊥.

Let λ = (4v + w)−
1
2 ; since ρ|P = −4v+w

2
, we have a diffeomorphism between P and the set

Q = ρ−1(−1
2
) ∩ (µJ + iµK)−1(0) ∩ {µI > 0} given by

l : p 7→ λ(p) · p.

By denoting with $ the projection on V, we want now to compute the espressions

gN = g($ ◦ dl·, $ ◦ dl·) and ω($ ◦ dl·, $ ◦ dl·).

Decomposing u ∈ TpP as u1 + u2, with u2 ∈ span(Y0, YI , YJ , YK), and using relations (11),
one can eventually find the espression for the metric

gN0 =
1

4v + w

(
g̃ +

1

v
ξ2 − 1

2(4v + w)
(2ξ + η̄)� (2ξ + η)

)
, (19)

or, equivalently, denoting by ϕ = 2ξ+Kryg̃
4v+w

,

gN0 =
1

4v + w

(
g̃ +

1

v
ξ2 − 1

2
ϕ2

)
− (Imη)2

2(4v + w)
, (20)

which is well defined as metric on N0.
In a similar way, one can find that the fundamental 4-form on N0 is given by

Ω = χI ∧ χI + χJ ∧ χJ + χK ∧ χK , (21)

where χI , χJ , and χK are the i, j, k components of

χ =
1

4v + w
ω̃ − 1

2(4v + w)
(2ξ + η̄) ∧ (2ξ + η).

Theorem 2.6. If the hyphotesis of 2.4 are satisfied, then (19) and (21) define a quaternionic
Kaḧler structure on the manifold Q(M̃), which admits a quaternionic Kaḧler action of S1.

Symmetries of the construction We want now to look briefly at some symmmetries and
asymmetries of the presented construction.

Observe fist that, if we start from an hyperkähler manifold M̃ and we pass to the quater-
nionic Kähler manifold Q(M̃) through H(M̃), the Swann bundle U(Q(M̃)) is exactly H(M̃).
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On the other hand, let us take a quaternionic Kähler manifold N and perform the con-
struction to find the corresponding hyperkähler manifold K(N). If we now come back to the
quaternionic Kähler side starting from K(N), what we find is not N, but instaed the open
and everywhere dense manifold N0 = N \ {φ = 0}, where

φ : N → A

is the quaternionic Kähler moment map associated to the S1
0 action on N.

H(K(N))

$$
K(N)

99

N

zz
U(N)

ee

Indeed, when taking the quotient P/S1
r , we are away from the level set {µ = 0}, where

here µ denotes the hyperkähler moment map for the action of S1 on U(N), and, from the
quotient constructions for quaternionic Kähler manifolds seen in Section 1, we can observe
that the set {µ = 0} ⊂ U(N) corresponds exactly to the set {φ = 0} ⊂ N.

2.3.2 The approach via twistor theory

In [11] Hitchin describes a way to study the correspondence from the point of view of twistor
spaces. See, for a treatement of twistor theory, [2]. Here we just recall that the twistor space
Ẑ of a quaternionic Kähler manifold is a (2n+ 1)-dimensional Kähler-Einsten manifold with

a complex contact structure, given by a holomorphic section α ∈ T ∗
Ẑ
⊗K−1/(k+1)

Ẑ
, where T ∗

denotes the cotangent bundle, while K the anticanonical line bundle of Ẑ.
The idea of the construction then goes as follows.

We have seen that, to pass from the hyperkähler to the quaternionic Kähler side of the
correspondence, one needs the introduction of a S1 principal bundle P over the manifold M̃.
Given that, one just lifts the S1 circle action on M̃ to P and take the quotient manifold.

Haydys introduces the bundle via its curvature form ddcIρ − ω̃I , where dcI = I∗dI, ωI is
the invariant Kähler form and ρ the relative moment map for the S1 action on M̃.

Hitchin’s idea, instead, starts from the observation that the bundle considered is hyper-
holomorphic: indeed, one can prove that ddcIρ − ω̃I is of type (1, 1) with respect to all the
three complex structures I, J,K, and so, with respect to any complex structure of the 2-
sphere family of complex structures on M̃, thus (if the cohomology class ω

2π
is integral) it can

be thought as curvature of a hyperholomorphic connection.
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At this point, he shows that a hyperholomorphic line bundle on M̃ is uniquely determined
by a holomorphic line bundle LZ on the twistor space Z of M̃ which, further, depends only
on the geometry of the twistor space and not on the twistor lines (unlike the hyperkähler
metric on M̃).

The holomorphic line bundle LZ on Z Since a hyperholomorphic connection has cur-
vature of type (1, 1) with respect to all Ix = x1I+x2J+x3K, with (x1, x2, x3) ∈ S2, it follows
that such a connection on M̃, pulled back to Z = M̃ × S2 defines a holomorphic structure
on the bundle. The definition of the hyperholomorphic line bundle on M̃ through twistors
hence consists in looking for a holomorphic line bundle LZ on the twistor space.
The starting point is the possibility to define a natural holomorphic line bundle LZ on the
twistor space of a hyperkähler manifold with a circle action, which is trivial on every twistor
line and corresponds to a hyperholomorphic line bundle L on M̃ ; the description of such an
object involves the use of Čech cohomology (see [11, Section 2]), but one can think at it by
observing that LZ on Z → P1 has a meromorphic connection with poles on the fibres over 0
and ∞. The curvature of such a connection is a closed meromorphic 2-form that, restricted
to each fibre over P1 \ {0,∞}, gives a multiple of the holomorphic symplectic form ω.
Indeed, Hitchin then proves that LZ coincides with the holomorphic line bundle P with
curvature F = ddcIρ− ω̃I on Z = M̃ × S2. (see ([11, Section 3]).

Now one can pass from the twistor space of the hyperkähler manifold to the one of the
corresponding quaternionic Kähler manifold: the contact form for the quaternionic Kähler
metric will be defined in terms of the meromorphic connection on LZ .

The quaternionic Kähler manifold On the twistor space Z of a hyperkähler manifold
with a circle action we have now a principal C∗ bundle P with a lifted action. Assume for
convenience that the holomorphic vector field Y associated to the circle action generates a
C∗ action on P ; then, after removing the fixed points, we can define Ẑ as the quotient.

C∗ ))
P

p
�� p̂ ��

C∗r
uu

Z

��

Ẑ

��
S1
r

**
M̃ N S1

0
tt

Hitchin shows that Ẑ has a contact structure α invariant by the induced C∗ action and is
therefore a holomorphic contact manifold: indeed, if p̂ : P → Ẑ is the quotient map for the
action, since the tangent bundle of P along the fibres is trivial, KP = p̂∗KẐ , and similarly,
KP = p∗KZ = O(−2(k + 1)) by the properties of the twistor space Z of M̃, so

p̂∗K
−1/(k+1)

Ẑ
∼= p∗O(2).
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We should then define our contact form α on Ẑ as a section of T ∗
Ẑ

(2).
This is done in terms of the connection on P : consider the meromorphic connection 1-
form A on P with poles at ξ = 0,∞. This defines a section ξA ∈ T ∗P (2), which is clearly
invariant under the circle action and, further, results to be non-degenerate and such that
the contraction Ỹ yA vanishes identically. These are exactly the properties that p̂∗α ∈ T ∗P (2)
should verify, so we can choose our desired form α to be defined by p̂∗α = ξA.
Since then the bundle P is trivial on the twistor lines of Z, they lift to P and descend to Ẑ to
define the twistor lines on Ẑ. The space Ẑ is then completely determined and is the twistor
space of the associated quaternionic Kähler manifold.

3 Examples

This section is devoted to the attempt to understand how the correspondence between hy-
perkähler and quaternionic Kähler manifolds admitting S1 symmetries work in some explicit
examples.

3.1 The cotangent space T ∗CPn

Consider as a first example the manifold T ∗CPn.
We have seen in section 1 that the hyperk ähler quotient of Hn+1 by S1 acting by multiplica-
tion on the left with respect to a non-zero value of the moment map is topologically T ∗CPn
and that the metric coincides with the one defined by Calabi.
Hence, we have that in this case that H(T ∗CPn) = Hn+1∗ with its flat metric (we need to
remove the zero level set of the relative moment map). Consequently, Q(T ∗CPn) = Hn+1∗/H∗
is HPn, but also here we need to remove the zero set of the corresponding moment map.
Recall that we have previously seen that the Swann bundle U(HPn) is in fact Hn+1∗.

3.2 Flat manifolds

Consider as manifold M̃ the ring H of quaternions, with coordinate q = q0 + q1i+ q2j + q3k,
and the following action of S1

r :
(z, q) 7→ zqz̄

Using the notations from the previous chapter and choosing as triple of symplectic forms the
self-dual one, it is easy to see that, in this case, Kr(q) = −2q3j + 2q2k and so w = 4(q23 + q22)
and, further, we have

dρ̃ = −Kryω̃1 = −2q3dq3 − 2q2dq2 = d(−q23 − q22).

Then −w+2ρ̃
4

= − q23+q
2
2

2
and we may choose as function v

v =
1

2
(1− q23 − q22),
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which is positive on R2
y0y1
× D2

y2y3
(D2 ⊂ R2 is the open disk of radius 1). Then, the

principal S1
0 -bundle P is trivial and formulae (13) and (14) define an hyperkähler structure

on M0 = H(R2 ×D) = H∗ × R2 ×D if and only if

Fξ = i∂1∂̄1ρ̃− ω̃1 = −1

2
d(kryg̃)− ω̃1

= 2dq3 ∧ dq2 + dq0 ∧ dq1 + dq2 ∧ dq3 = dq0 ∧ dq1 + dq3 ∧ dq2,

so so that ξ = q0dq1 + q3dq2. Moreover, Q(R2 ×D) = R2 ×D and, setting d = q23 + q22, one
finds that

gN =
1

2(1 + d)
(g̃ +

2

1− d
ξ2 − 1

4(1 + d)
(8ξ2 + 4ξ � Reη + η � η̄))

=
1

2(1 + d)
(g̃ +

4d

(1− d)2
ξ2 − 1

4(1 + d)
(4ξ � (kryg̃) + 2Re(η ⊗ η̄))).

Now, since

Re(η ⊗ η̄)) = (kryg̃)2 + (kryω̃1)
2 + (kryω̃2)

2 + (kryω̃3)
2

= 4((q2dq3 − q3dq2)2 + (q2dq2 + q3dq3)
2

+ (q3dq0 − q2dq1)2 + (q2dq0 − q3dq1)2)
= 4d (dq20 + dq21 + dq22 + dq23)

= 4d Re dq ⊗ dq̄,

we obtain

gN =
1

2(1 + d)
(
1− d
1 + d

Re dq ⊗ dq̄ +
4d

(1− d)2
ξ2 − 1

(1 + d)
(ξ � kryg̃))

=
1

2(1 + d)

(1− d
1 + d

Redq ⊗ dq̄ +
4d

(1− d)2
(q0dq1 + q3dq2)

2

− 1

(1 + d)
(q0dq1 + q3dq2)� (q2dq3 − q3dq2)

)
.

The metric gN is Einsten and antiself-dual but incomplete. Similarly, one can compute the
metric on H∗ × R2 ×D, which is also incomplete.

Notice that, choosing as triple of symplectic forms the antiselfdual one, we would have
found dρ̃2q3dq3 + 2q2dq2 = d(q23 + q22), thus −w+2ρ̃

4
= −3

2
(q23 + q22) and we may choose the

function v as v = 3
2
(1 − q23 − q22), positive on the set R2

y0y1
× D2

y2y3
. In this case, one has a

hyperkähler structure on M0 = H(R2 ×D) = H∗ × R2 ×D if and only if

Fξ = 2dq2 ∧ dq3 + dq0 ∧ dq1 + dq3 ∧ dq2 = dq0 ∧ dq1 + dq2 ∧ dq3

so that ξ = q0dq1 + q2dq3.
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3.3 Gibbons-Hawking Spaces

We have seen that, if M̃ is hyperkähler with a S1 triholomorphic action generated by the
vector field W, then the hyperkähler moment map shows M̃ as a fibration over an open set
in R3 with generic fiber S1.
In general such manifolds do not admit an S1

r action. However, if we choose the function V
satysfying (1) of the form (7), one can see that, when all the poles uj of V lie on the same
line, then such action exists and its projection to R3 is given by (z, x)→ zxz̄, with x ∈ H.

Taub-NUT metrics Consider the Taub-NUT metric as in Section 1.1.2. Recall that, in
this case, our hyperkähler manifold M̃ is still the space H, endowed in addition with an S1

action given by eit ·q = eit(q0+q1i)+eit(q0+q3i)j and the moment map µ : H→ ImH ∼= R⊕C
associated to it, with respect to the anti-self dual basis, is given by µ(q) = q̄iq = u1i+k(u2 +
iu3), with 

u1 = q20 + q21 − q22 − q23
u2 = 2(q0q2 + q1q3)
u3 = 2(q1q2 − q0q3).

The Taub-NUT metric g̃ = Ve du · du+ 1
Ve
θ20 on H (e > 0), with

θ0 =
1

2π

−q1dq0 + q0dq1 − q3dq2 + q2dq3
q20 + q21 + q22 + q23

and Ve = e+ 1
4π|u| = e+ 1

4π|q|2 is hyperkähler with respect to three 2-forms (2) and becomes,

in terms of the qi,

g̃ =
1

π|u|
[(4π|u|e+ 1)(q20 + q22 + q23) +

1

4π|u|e+ 1
q21]dq20

+
1

π|u|
[(4π|u|e+ 1)(q21 + q22 + q23) +

1

4π|u|e+ 1
q20]dq21

+
1

π|u|
[(4π|u|e+ 1)(q20 + q21 + q22) +

1

4π|u|e+ 1
q23]dq22

+
1

π|u|
[(4π|u|e+ 1)(q20 + q21 + q23) +

1

4π|u|e+ 1
q22]dq23

+
8e(2π|u|e+ 1)

4π|u|e+ 1
[qoq1dqo � dq1 − q3q1dqo � dq2 + q2q1dqo � dq3

+ q3q0dq1 � dq2 − q0q2dq1 � dq3 + q2q3dq2 � dq3]

(22)

The S1
r = Stabi-action on H must commute with the projected one:

(z · q)i(z · q) = µ(z · q) = zµ(q)z̄ = zq̄iqz̄ = zqizq,
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thus one has z · q = zqz̄. It is easily verified that (Lz)
∗(ω) = zωz̄. We still have that

kr = [i, q] = −2q3j + 2q2k, but its squared norm is now

w =
4

π|u|
1

4π|u|e+ 1
(q22 + q23)2 +

4

π|u|
(4π|u|e+ 1)(q22 + q23)(q20 + q21)

=
4

π
(q22 + q23)

1 + 8πe(2π|u|e+ 1)(q20 + q21)

4π|u|e+ 1

(23)

Since

ω̃1 = du1 ∧ θ0 + V du2 ∧ du3
= 4e[(q3q0 + q1q2)dq02 + (q3q1 − q0q2)dq03
+ (q3q1 − q0q2)dq12 − (q3q0 + q1q2)dq13]

+ [
1

π
+ 4e(q22 + q23)]dq01 + [

1

π
+ 4e(q20 + q21)]dq32

we have dρ̃ = Kryω̃1 = d[4e(q20 + q21) + 1
π
(q22 + q23)], thus the moment map ρ̃ is ρ̃ = 4e(q20 +

q21) + 1
π
(q22 + q23). Further, one finds

v = − 3

2π

q22 + q23
4π|u|e+ 1

[8πe(2π|u|e+ 1)(q20 + q21) + 1 +
4

3
πe(q22 + q23)]

so, to have the flat case as degenerate one for e = 0, we may choose

v +
3

2π
=

3

2π
{− q22 + q23

4π|u|e+ 1
[8πe(2π|u|e+ 1)(q20 + q21) + 1 +

4

3
πe(q22 + q23)] + 1}

As seen above, for e = 0, the set where this function is positive is given by R2
y0y1
× D2

y2y3
.

For e > 0 we get a perturbation D of it that is still a cylinder topologically (for |u| → ∞,
this is the interior of a hyperboloid in C2).
Now, the curvature for the S1

0 -bundle P over H is given by the formula (16), thus, in order
to find the connection ξ, one just needs to compute Kryg̃ and to find a 1-form α such that
dα = ω̃1, so that (up to closed forms) ξ = +1

2
(Kryg̃) +α. By denoting by h = 4π|u|e+ 1 and

g = 2π|u|e+1
4π|u|e+1

, we find

Kryg̃ = (16e · g(q20 + q21) +
2

πh
)(−q3dq2 + q2dq3) + 16e · g(q22 + q23)(q1dq0 − q0dq1).

To find α, write α = α0dq0 +α1dq1 +α2dq2 +α3dq3 and impose the following system of PDEs

1
π

+ 4e(q22 + q23) = −∂α0

∂q1
+ ∂α1

∂q0
1
π

+ 4e(q20 + q21) = +∂α2

∂q3
− ∂α3

∂q2

4e(q3q0 + q1q2) = −∂α0

∂q2
+ ∂α2

∂q0

4e(q3q1 − q0q2) = −∂α0

∂q3
+ ∂α3

∂q0

4e(q3q1 − q0q2) = −∂α1

∂q2
+ ∂α2

∂q1

−4e(q3q0 + q1q2) = −∂α1

∂q3
+ ∂α3

∂q1
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A solution of this system is
α0 = 4e(− 1

2π
q23q1 − 1

2π
q22q1)− 1

2π
q1

α1 = 4e( 1
2π
q22q0 + 1

2π
q23q0) + 1

2π
q0

α2 = 4e( 1
2π
q21q3 + 1

2π
q20q3) + 1

2π
q3

α3 = 4e(− 1
2π
q21q2 − 1

2π
q20q2)− 1

2π
q2

Then a possible ξ is given by the coefficients

ξ0 =
16eq1

2
g(q22 + q23)− 2eq1

π
(q22 + q23 +

1

4e
)

ξ2 = − q3
π|u|

[(h(q20 + q21) +
1

h
(q22 + q23)] +

2eq3
π

[(q20 + q21) +
1

4e
],

(24)

while ξ1 = −ξ0 and ξ3 = −ξ2. We add to this 1-form the closed form
q1
2π
dq0 +

q0
2π
dq1 +

q3
2π
dq2 +

q3
2π
dq3

in order to make our choice of ξ coincide with the one of the flat case for e = 0. The S1
0 -bundle

P is now completely determined. Substituing g̃, ξ, kryg̃, kryω̃i in formula (19), we find then
a family gN,e of Einsten self-dual metrics on degenerations of H(R2

y0y1
× D2

y2y3
) which are

incomplete.
Notice that the hyperkähler-quaternionic Kähler correspondence in this case (and in the flat
one) destroys all the symmetries of the original space.

3.4 The Eguchi-Hanson case

We now describe as the studied correspondence can be understood for the case of Eguchi-
Hanson metric on T ∗S2 via the twistor approach, as done by Hitchin in [11, Section 4.4].
Consider then as hyperkähler manifold with a circle action the space T ∗S2 ∼= T ∗CP1, with the
natural action on fibres. Recall that the metric considered can be found also as hyperkähler
quotient of H2 by circle action; further, the twistor space Z can be seen as the quotient of
an open set inside

W = {(v, ξ) ∈ V (1)⊕ V ∗(1)→ P1 : 〈v, ξ〉 = ζ}, (25)

with V a 2-dimensional vector space, via the action (v, ξ)→ (λv, λ−1ξ), and, through consid-
erations of U(2) invariance, W, with the C∗ action, turns out to be the holomorphic principal
bundle P for Eguchi-Hanson.
Consider the lift (v, ξ)→ (νv, νξ, ν2ζ) of the geometrical action on M. The equality 〈v, ξ〉 = ζ
determines ζ in terms of v and ξ. Hence, the quotient is P(V ⊕V ∗) ∼= P3, which is the twistor
space of S4. Then, Q(T ∗S2) = S4 and the quaternionic Kähler metric is the standard metric
on the sphere.
Hitchin underlines that, more precisely, the associated quaternionic Kähler manifold is the
complement of a circle in S4, since one has to remove fixed points of the circle action on
the hyperkähler side. Moreover, there is also a choice in lifting the geometric action on the
twistor space.
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3.5 The projective space CP2 ?

We now start from the quaternionic Kähler side, by considering the quaternionic Kähler
manifold CP2. We wonder what the corresponding hyperkähler manifold is.
The first step is to determine the Swann bundle of CP2. This is, locally, the negative spin
bundle V− \ 0 over CP2 (to have it well defined globally, one has to quotient by Z2 since CP2

is not a spin manifold), as explained by Swann in [13, Chapter 2].
Notice that CP2 is the quaternionic Kähler quotient of HP2 by the quaternionic kähler action
of S1 defined in the first section. Thus, one can also obtain the Swann bundle CP2 as the
hyperkähler reduction, at level 0, of HP∈ = H3 0 by the lifted S1 action.

S1
(hk)

))
H3 0

��

(hk) // V−

��
S1
(qk)

((
HP2 (qk) // CP2

One should now define a quaternionic Kähler circle action on CP2, lift it to a hyperkähler
circle action on negative spin bundle V−, and perform the hyperkähler reduction.
One may try to do that by taking a U(1) inside SU(3) acting on CP2, and lifting it to the
spin bundle.

3.6 Considerations

It is worth to underline that, from the considered examples, one can see how the studied
correspondence, acting from the hyperkähler to the quaternionic Kähler side, can destroy all
the symmetries of the underlying original space: this is true for the Taub-NUT metric and
already for the flat case.
We leave to further investigation the case of the projective space CP2. A way to start could
be to anaylize the possible triholomorphic circle actions of the negative spin bundle V− over
CP2 and the relative hyperkahler quotients.
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4 Construction of twistor spaces in dimension 4

Given an oriented Riemannian 4-manifold, (M, g, θ), where g is the metric and θ is the
volume form, we want to study the space of almost complex structures, J which are com-
patible with both the metric and the orientation in the sense that g(JX, JY ) = g(X, Y )
and {e1, Je1, e2, Je2} is an oriented basis for any e1, e2 ∈ TmM. By defining a 2-form, ω by
ω(X, Y ) = g(JX, Y ) the second condition can be stated as ω∧ω = 2θ and the first condition
is replaced by demanding that ω has unit length with respect to g.

SO(4) has a natural representation on R4, hence this induces a representation on Λ2(R4)∗ ∼=
so(4). This representation is reducible and decomposes the space of 2-forms into the self-dual
(SD) and anti-self dual (ASD) ones spanned by;

ω1
± = dx12 ± dx34
ω2
± = dx13 ± dx42
ω3
± = dx14 ± dx23

in accordance to the splitting of the adjoint representation, so(4) = so+(3)⊕so−(3). The unit
2-forms compatible with θ are the SD ones. Since so(3) ∼= R3, the orbit of any given non-
zero element in Λ2(R4)∗ is a 2-sphere. Put differently, the stabiliser of any non-degenerate
2-form in SO(4) is U(2), hence the orbit space is the symmetric space SO(4)/U(2) which is
diffeomorphic to S2. This sphere parametrises the space of almost complex structures on R4.
This analysis is transferred to M by the identification R4 ∼= TmM defined by any compatible
frame at m. If we denote the reduced oriented orthonormal frame bundle of M by P then
we can define the associated bundle of ASD 2 forms by

Λ2
−M = P ×SO(4) Λ2

−(R4)∗.

The (orientation reversing) twistor space, π : Z → M is then defined to be the unit sphere
bundle in Λ2

−M. By orientation reversing, we mean here that we are working with the sphere
bundle in the ASD bundle instead of the SD one. Then an almost complex structure on M
is simply a section of this bundle (after pairing with the metric). We note here that the
almost complex structure is independent of the choice of the metric in any conformal class
since if we replace g by e2fg for some function on M then θ is replaced by e4fθ, hence J is
unchanged.

The vector bundle, Λ2
−M inherits the Levi-Civita connection from P and since the con-

nection preserves the metric it follows that horizontal curves in Z remain in Z. So the tangent
bundle of Z splits into a horizontal part, H and vertical part, V (the tangent to the sphere
fibres). At the point z = (m, ĵ) ∈ Z, where ĵ is an almost complex structure on TmM i.e. a
point in the fibre, π−1(m), there is a natural almost complex structure acting on Hz by

JHz : Hz → Hz

X 7→ π−1∗ ĵ(π∗X)
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The fibres are P1s and so have a natural almost complex structure, JVz : Vz → Vz (com-
patible with the orientation given by the normal pointing outwards of the sphere) but there
is also another choice of almost complex structure on V namely −JVz . Combining JH with
either of these two, we have 2 natural choices of almost complex structures on Z which we
denote by J and Ĵ respectively. The natural question that now arises is when, if ever, are
any of these almost complex structures integrable. This is answered by the following two
well-known results;

Theorem 4.1 ([1]). Z is a complex manifold with respect to J iff M is a self-dual manifold
i.e. ASD Weyl tensor vanishes.

Theorem 4.2 ([4]). Z is never a complex manifold with respect to Ĵ .

Two fundamental features that Z possesses are a fixed point free antiholomorphic involu-
tion which preserves the fibres in the sense that it maps each P1 fibre to itself and the normal
bundle of each fibre is biholomorphic to the bundle O(1)⊕O(1). The fundamental theorem
of Penrose is that these are in fact sufficient data to recover M.

Theorem 4.3. [8] If a complex 3-fold Z has a P1 fibration whose normal bundles are O(1)⊕
O(1) and also has an anti-holomorphic fibre preserving involution then Z is the twistor space
of some SD 4-manifold M.

The two well-known examples of twistor maps are P3 → S4 (Penrose fibration) and
F(1,2,3) → P2. The first one can be described very simply as follows;

We identify C2 × C2 = H2 via the map ((x, y), (u, v)) 7→ (x + jy, u + jv) where j is the
unit quaternion in H, and S4 = HP1 by the stereographic projection. We consider C as a
subalgebra of H which itself acts by right multiplication on H2. The projection of the complex
line in P3 to its quaternionic line spanned in H2 (over H) is the Penrose fibration, explicitly

[x : y : u : v]C 7→ [x+ jy : u+ jv]H.

The fibre π−1[1 : 0] = {[a : b : 0 : 0] |(a, b) ∈ C2 − (0, 0)} ∼= P1, as expected.
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5 Twistor spaces in higher dimensions

Before moving to the description of twistor spaces in higher dimensions, which one can
hope to achieve only in dimensions which are a multiple of 4, we recall that the definition of
quaternionic Kähler manifolds means that the holonomy group is contained in Sp(n)Sp(1). In
dimension 4, this definition would be trivially satisfied for any oriented Riemannian manifold
since Sp(1)Sp(1) = SO(4). So we need more to define an analogue of QK structure in
dimension 4. Two properties of QK manifolds are that they are Einstein and moreover
the curvature operator, R : Λ2TM∗ → Λ2TM∗, eij 7→ Rijkle

kl where ei is an orthonormal
basis, restricted to the bundle, A defined earlier is a positive multiple of the identity map.
With respect to the decomposition of 2-forms as SD and ASD ones, R admits the block
decomposition

R =

(
A B
B∗ D

)
: Λ2

+ ⊕ Λ2
− → Λ2

+ ⊕ Λ2
−

where Tr(A)=Tr(D)= S/4 where S is the scalar curvature, B corresponds to the traceless
Ricci tensor and the traceless part of A and D are the SD and ASD Weyl tensors, W±

respectively. Identifying A with Λ2
−, the natural definition of QK manifold in dimension 4

becomes that M is an oriented Riemannian manifold which is Einstein (B = 0) and self-dual
(W− = 0.)

We now move on to describe the twistor space construction for HK and QK manifolds
in the same spirit as we did for the 4 dimensional case.

For a general HK manifold, (M, g, I, J,K) of dimension 4n we simply define its twistor
space, Z to be the trivial bundle, M ×S2. This bundle is trivial due to the fact that we have
a global basis of the bundle A and hence restricting to the unit sphere in each fibre gives a
trivial P1 bundle. As before we can define a natural almost complex structure on Z which in
this situation can be described more explicitly. Using the local coordinates on the open set,
{[1 : z] | z ∈ C} we can parametrise the fibres as;

(a, b, c) = (
1− |z|2

1 + |z|2
,

2Re(z)

1 + |z|2
,

2Im(z)

1 + |z|2
)

where we are using I, J and K as the standard Euclidean coordinates. So the natural almost
complex structure at z = (m, (a, b, c)) ∈ Z is given by

Q = (aI + bJ + cK)⊕ i.

where multiplication by i is just the complex structure on P1. As in the 4 dimensional case
Q is integrable. This is proved directly using the Newlander-Nirenberg theorem. We need to
check that the algebraic ideal generated by the holomorphic 1-forms is in fact a differential
ideal i.e.

dθ = θi ∧ αi
where Qθ = iθ, θi are a basis of holomorphic 1 forms and αi are arbitrary 1-forms. In the
given local coordinates the (1, 0)-forms for Q are spanned by βi + zKβi for (1, 0) forms βi on
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M w.r.t I. It is then an easy matter of computation to check that the ideal is closed under
exterior derivative. We now list some features of Z which are very similar to those described
in the previous section that will allow a reverse generalised Penrose construction.

The normal bundle of each fibre, π−1(m) is obviously just TmM which as a holomorphic
vector bundle is O(1) ⊕ · · · ⊕ O(1) (2n times) (we show an explicit computation of this for
a specific case in the next section).

Right multiplication by j on C2 ∼= H induces a real structure on P1. This induces an anti-
holomorphic involution on the fibres which can equivalently be described as the anti-podal
map on S2.

The (1, 0) forms on Z can be used to define a complex (2, 0) form which restricts to a
holomorphic symplectic form on the fibres for the projection, p : Z → P1. As a holomorphic
form, it is a section of the bundle Λ2(ker dp)∗ ⊗ O(2). We can state a generalised Penrose
theorem which recovers M from Z.

Theorem 5.1. [6] Suppose that Z is a complex manifold of real dimension 4n+2 so that the
projection map, p : Z → P1 is a holomorphic fibre bundle that has a family of holomorphic
sections with normal bundle O(1) ⊗ C2n and there is a holomorphic 2-forms and involution
map as described above. Then the parameter space of real sections is a 4n-dimensional HK
manifold, M with Z as its twistor space.

The QK case is quite different due to fact that the bundle is not trivial. The twistor space
is defined as the sphere bundle in A consisting of almost complex structures compatible with
the metric. By the definition of QK manifolds, the Levi Civita connection preserves the
bundle A in the sense that ∇I,∇J and ∇K are combinations of I, J and K. Hence we once
again have a splitting of the tangent space into a horizontal and vertical component. The
description for the construction of the almost complex structure is similar as that described
in the 4-dimensional case and turns out to be integrable as well. The only difference being
that the base manifold need not be SD.
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6 An explicit description of the twistor space of P2

Definition 6.1. Let {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V be a sequence of subspaces of a vector
space, V strictly contained in each other, with di = dim(Vi). This is called a flag in V. For
fixed choice of (d1, ..., dk), the set of all flags defines a flag manifold.

The flag manifold, F(1,2,3) is the space of flags of type (1, 2, 3) in C3. As a homogeneous
space it is given by,

U(3)

U(1)× U(1)× U(1)

which we shall come back to in the next section.

Noting that once a choice of a vector in C3 has been made there is only a choice of a second
vector in its orthogonal complement C2 to define the flag, we get the equivalent description
of F(1,2,3) as a projective variety,

F(1,2,3) = {(v, w) ∈ P2 × P2 | v · w = 0}.

The twistor map, π : F(1,2,3) → P2 is then given by

π([v], [w]) = [v̄2w3 − v̄3w2 : v̄3w1 − v̄1w3 : v̄1w2 − v̄2w1]

In order to check that this is indeed a twistor map, we need to verify that the fibres are
P1, the normal bundle of the fibres are O(1) ⊕ O(1) and that there is an anti-holomorphic
involution preserving the fibres. Since we just saw that it is a homogeneous space, it is
sufficient to check the properties for a fixed fibre.

Considering the point [1 : 0 : 0] ∈ P2, an easy computation shows that

π−1[1 : 0 : 0] = {([0 : 1 : z̄], [0 : −z : 1]) | z ∈ C} ∪ {[0 : 0 : 1], [0 : 1 : 0]}

which shows that indeed the fibre is a sphere. Observe that the anti-holomorphic involution
map given by the map, ([x : y : z], [u : v : w]) 7→ ([u : v : w], [x : y : z]) indeed defines an
automorphism of the fibres.

We find explicitly the normal bundle of this P1.

Consider the (inverse) chart maps, φ1, φ2 : C3 → F(1,2,3) given by,

φ1(x, y, z) = ([x̄ : 1 : ȳ], [z : −y − xz : 1])

φ2(x, y, z) = ([x̄ : ȳ : 1], [z : 1 : −y − xz])

in which the fibre P1 is covered by

φ1(0, y, 0) = ([0 : 1 : ȳ], [0 : −y : 1])

φ2(0, y, 0) = ([0 : ȳ : 1], [0 : 1 : −y]).
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We compute the transition maps as,

(φ−12 ◦ φ1)(x, y, z) = (
x

y
,

1

y
,

z

−y − xz
)

and restricting to P1 i.e. x = z = 0 we get

(φ−12 ◦ φ1)∗∂x =
1

y
∂x

(φ−12 ◦ φ1)∗∂z = −1

y
∂z

which corresponds indeed to the transition maps of O(1)⊕O(1). This shows that indeed the
flag manifold F(1,2,3) is the twistor space of P2. Note that P2 is an Einstein manifold with the
Fubini-Study metric and is SD hence a QK 4-manifold.
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7 Symmetric spaces

Definition 7.1. A Riemannian symmetric space, (M, g) has at each point, p ∈ M an
isometry, fp : M → M such that p is a fixed point and f(expp(X)) = expp(−X) for every
X ∈ TpM.

If we let G be the Lie group of isometries of M acting transitively and H the stabiliser
of a point, p then we have that M and G/H are diffeomorphic. Furthermore, the map fp
defines an involution, σ : G→ G by σ(g) = fp ◦ g ◦ fp.

A general triple (G,H, σ) where H is a closed subgroup of the fixed point set of an
involution σ containing the identity component is called a symmetric space. The differential
of the involution gives an eigenspace decomposition

g = h⊕m

with eigenvalues +1 and -1 respectively. We have that [h, h] ⊂ h, [m,m] ⊂ m and ad(H)m ⊂
m. The last condition means that g is a reductive Lie algebra.

In the Riemannian case, we have that H has a compact isotropy representation on TpM
since it is a subgroup of O(n).

One can recover the Riemmanian symmetric manifold, (M, g) from the data (G,H, σ)
when H has a compact isotropy representation. We define M as the coset space G/H. The
involution σ defines the symmetries on the coset space. Since Ad(H) is compact we can define
an H-invariant inner product on To(G/H) with respect to which h and m are orthogonal.
This is done simply by choosing an arbitrary inner product on g and integrating over H to
obtain an H-invariant inner product. Restricting this inner product to m which can naturally
be identified with To(G/H) we extend it to M by acting on the left by G. Any such invariant
metric on G/H is in fact isometric to (M, g).

If the symmetric space (M, g) also has an almost complex structure J compatible with the
metric such that fp∗◦J = J ◦fp∗ then M is said to be a Hermitian symmetric space. The fact
that ∇J is a degree 3 tensor and invariant by the symmetries implies that ∇J = 0. Hence any
Hermitian symmetric space is necessarily Kähler. Recovering the Hermitian symmetric space
from (G,H, σ) is again possible if m admits an almost complex structure J which commutes
with Ad(H) and then extending it to a left invariant almost complex structure on G/H. In
this case, J is also integrable.

We should mention here that the notion of symmetric spaces hold whenever we have a
manifold endowed with a connection ∇ and in such a situation we only need the symmetry
maps to preserve ∇. The Riemannian case is just the special case when ∇ is the Levi Civita
connection and this automatically implies that the symmetries are isometries since ∇ is
determined by g itself and the fact that it is torsion free.

We are interested in the case when G = SU(3) and H is either S(U(1) × U(2)) or
S(U(1)× U(1)× U(1)). The Hermitian symmetric spaces are then:
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P2 ∼=
SU(3)

S(U(1)× U(2))
, F(1,2,3) ∼=

SU(3)

S(U(1)× U(1)× U(1))

We have shown in the previous section that F(1,2,3) → P2 is a P1 fibration. Recall that
the Fubini-Study metric on P2 can be defined as follows. Consider the real valued function,
f : C3 − {0} → R given by f(z1, z2, z3) = log(Σ|zi|2). Then the (1, 1)-form ω = ∂∂̄f is
horizontal for the projection to C3/C× and is invariant under the action of C×. So it descends
to a 2-form on P2 which pairs with the natural complex structure to give the Fubini-Study
metric, g, which can written in local coordinates on {[1 : x+ iy : u+ iv]|x, y, u, v ∈ R} as

g =


1 + u2 + v2 −xu− yv 0 −xv + yu
−xu− yv 1 + x2 + y2 xv − yu 0

0 xv − yu 1 + u2 + v2 −xu− yv
−xv + yu 0 −xu− yv 1 + x2 + y2


Note that since f is SU(3) invariant hence so is g. It should therefore not come as a surprise

that this metric will coincide exactly with the canonical metric on SU(3)/S(U(1) × U(2)).
In other words, the canonical metric on the symmetric space described above is exactly the
Fubini-Study metric. The same argument holds for the Flag manifold. We have therefore
reduced our problem to one about symmetric spaces.

We choose the following basis for su(3)

v1 =

0 0 0
0 0 1
0 −1 0

 v2 =

0 0 0
0 0 i
0 i 0

h1 =

 0 1 0
−1 0 0
0 0 0

h2 =

 0 0 1
0 0 0
−1 0 0



h3 =

0 i 0
i 0 0
0 0 0

h4 =

0 0 i
0 0 0
i 0 0

 q1 =

i 0 0
0 0 0
0 0 −i

 q2 =

0 0 0
0 i 0
0 0 −i


Hence the Maurer Cartan form on SU(3) takes the form,

ω =

 ie7 e1 + ie3 e2 + ie4

−e1 + ie3 ie8 e5 + ie6

−e2 + ie4 −e5 + ie6 −i(e7 + e8)


where ej are the left invariant 1-forms dual to our choice of basis for su(3) and we compute

dω = −



2i(13 + 24) (37 + 83− 25 + 64) (15 + 47 + 63 + 47 + 48)
+i(71 + 18 + 26− 45) +i(72 + 16 + 35− 27− 28)

· 2i(31 + 56) (21 + 43 + 68 + 67 + 68)
+i(41 + 32 + 85 + 75 + 85)

· · 2i(42 + 65)


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where we denoted ei∧ej by ij simply for convenience. We can view SU(3) as a distinguished
frame bundle on F(1,2,3) with structure group U(1) × U(1) ⊂ U(3) ⊂ SO(6). This means
in particular that it determines a metric and a compatible almost complex structure. The
associated connection form is simply ω without the off-diagonal terms and the the matrix
without the diagonal elements is the solder form. In other words the Cartan connection
provides an absolute parallelism. Under the bundle isomorphism TF(1,2,3) ∼= SU(3) ×ad
(su(3)/u(1)2) given by the solder form, we get the metric,

g
F(1,2,3)

= e1e1 + e2e2 + e3e3 + e4e4 + 2e5e5 + 2e6e6

and the Kähler form,
Ω

F(1,2,3)
= e13 − e24 − 2e56

where we still denote by ei the pullback of the horizontal forms to F(1,2,3). The fact that
dΩ = 0 is checked directly from the above given relations. The almost complex structure
associated to this structure is the integrable one that we described earlier which maps e5 to
e6. The non-integrable complex structure is thus given by reversing the map on the vertical
vectors. According to a theorem by Bérard Bergery (see [2]) there exists exactly two Einstein
metrics on the flag manifold which can arise by a canonical variation, which we find as follows.
By rescaling the metric on the fibres, we hence get the nearly Kähler form on the twistor
space of P2 as

Ω̂
F(1,2,3)

= e13 − e24 + e56,

in which case we have

dΩ̂
F(1,2,3)

= 3((e12 + e34)(−e6) + (e14 + e23)e5)

This 2-form naturally corresponds to the non-integrable complex structure we described
earlier. Our example fits into a class of manifolds called nearly Kähler manifolds introduced
by Alfred Gray.

Definition 7.2. An almost Hermitian manifold, (M, g, J, ω) is said to be nearly Kähler if
∇J is skew-symmetric i.e. ∇XJX = 0 for all X ∈ Γ(TM).

These manifolds are said to have weak holonomy group [5] U(n), which geometrically
means that given any loop, γ in M with X = γ′(o) the parallel transport of the holomorphic
section containing X along γ takes values in U(n). The equivalence of these definitions is
seen from the formula

(∇XJ)X = ∇X(JX)− J(∇XX)

together with the fact that U(n) and J commute.Compact nearly Kähler 6-manifolds, some-
times referred to as Gray manifolds, can also be defined as 6-manifolds with structure group,
SU(3) defined by the addition of a holomorphic volume form, ψ+ + iψ−, which satisfy the
relations

dω = 3ψ+,

dψ− = −2ω ∧ ω.
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In our example the holomorphic volume form is defined by

ψ+ + iψ− = (1 + i3) ∧ (4 + i2) ∧ (5 + i6)

and a direct computation yields

dψ− = 4(6425 + 1432 + 3156)

= −2 Ω̂
F(1,2,3)

∧ Ω̂
F(1,2,3)

dΩ̂
F(1,2,3)

= 3ψ+

which shows that F(1,2,3) with the anti-canonical complex structure is indeed nearly Kähler.
We end the second part of this joint project here.
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